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Abstract 

Age-stratified serosurvey data are often used to understand spatiotemporal trends in disease incidence and exposure 
through estimating the Force-of-Infection (FoI). Typically, median or mean FoI estimates are used as the response vari‑
able in predictive models, often overlooking the uncertainty in estimated FoI values when fitting models and evaluat‑
ing their predictive ability. To assess how this uncertainty impact predictions, we compared three approaches with 
three levels of uncertainty integration. We propose a performance indicator to assess how predictions reflect initial 
uncertainty.

In Colombia, 76 serosurveys (1980–2014) conducted at municipality level provided age-stratified Chagas disease 
prevalence data. The yearly FoI was estimated at the serosurvey level using a time-varying catalytic model. Environ‑
mental, demographic and entomological predictors were used to fit and predict the FoI at municipality level from 
1980 to 2010 across Colombia.

A stratified bootstrap method was used to fit the models without temporal autocorrelation at the serosurvey level. 
The predictive ability of each model was evaluated to select the best-fit models within urban, rural and (Amerindian) 
indigenous settings. Model averaging, with the 10 best-fit models identified, was used to generate predictions.

Our analysis shows a risk of overconfidence in model predictions when median estimates of FoI alone are used to fit 
and evaluate models, failing to account for uncertainty in FoI estimates. Our proposed methodology fully propagates 
uncertainty in the estimated FoI onto the generated predictions, providing realistic assessments of both central ten‑
dency and current uncertainty surrounding exposure to Chagas disease.
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Significance statement
Estimating spatiotemporal variation in disease expo-
sure is critical to developing cost-effective strategies to 
reduce disease burden. However, where there is no well-
established surveillance system, it might be challenging 
to obtain such information. Serosurveys provide infor-
mation on past exposure at a certain location but do not 
reflect the current situation, particularly for long-lasting 

diseases such as Chagas disease. The FoI provides insight 
into the temporal patterns of the disease and is particu-
larly relevant for assessing spatiotemporal heteroge-
neities and interventions’ impacts. However, assessing 
incidence over countries and decades, when seropreva-
lence information remains limited, requires robust statis-
tical methods. We developed a modelling framework that 
predicts FoI in space and time from serosurveys able to 
propagate uncertainties using Colombia as a case study.
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Introduction
Between 5 and 18 million persons are estimated to be 
currently infected by Trypanosoma cruzi, the proto-
zoan parasite causing Chagas disease, and between 
4200 and 33,000 per year are estimated to die in the 21 
endemic countries in Latin America [1, 2]. These figures 
give a coarse picture of the epidemiological situation, 
which is problematic as reliable estimates of the spatial 
and temporal patterns of the disease burden are essen-
tial for governments and health organisations to assess 
progress towards control or elimination goals. Indeed, 
spatial estimates of exposure are critical to target vector 
control activities. Additionally, the current clinical bur-
den depends on past exposure as people infected by T. 
cruzi may develop a chronic form of the disease, requir-
ing long-term care. Temporal estimates of exposure to T. 
cruzi are essential to monitor diagnostic and treatment 
needs [3], and ultimately to coordinate intervention strat-
egies (e.g. targeted vector control and screening inter-
ventions). Finally, temporal patterns in exposure can also 
be used to evaluate past control interventions and guide 
future planning.

Estimating the burden of Chagas disease is challenging; 
there are no reliable measures of incidence, for example, 
in Colombia, only an estimated 1.2% of the at-risk popu-
lation received a screening test in 2008–2014 [4]. The low 
level of detection is partly linked to the unspecific nature 
of early symptoms and the long-lasting asymptomatic 
period, i.e. asymptomatic or unspecific symptoms can 
last for over 10 years and around 50% of those infected 
may never reach the chronic phase [2]. Moreover, the dis-
ease affects disproportionately poorer populations with 
limited access to the health system [5].

As demonstrated for other infectious diseases with a 
relatively low proportion of symptomatic cases, burden 
estimates typically rely on exposure estimates, particu-
larly the Force-of-Infection (FoI), i.e. the per-susceptible 
rate of parasite acquisition [3]. Seroprevalence surveys 
are typically used to reconstruct past and present inci-
dence patterns in various locations and a geostatistical 
model smooths the estimated FoI over space [6, 7].

Where this framework has been applied, given the 
complexity of the inference and relative scarcity of 
gound-truth data, it is common to assume that exposure 
has been constant over time. Although this may hold for 
FoI estimates for dengue [6, 8, 9], yellow fever [7], rubella 
[10, 11] and malaria [12], it is more challenging for Cha-
gas disease, as its protracted nature and substantial spa-
tial and temporal heterogeneities in the implementation 
of control measures lead to temporal and spatial hetero-
geneities in exposure.

Additionally, predicting FoI spatial patterns relies 
upon point estimates of FoI, with geostatistical models 

smoothing the central estimates [6, 7, 9], often neglect-
ing their uncertainty. This may generate over-confidence 
in FoI estimates and ultimately burden. Generating FoI 
and disease burden estimates that robustly incorporate 
uncertainty is essential to inform policy-relevant ques-
tions, from affected communities to stakeholders and 
policy-makers [13].

Here, we propose a framework to predict spatial as well 
as temporal variations in FoI that fully account for uncer-
tainties at various levels, particularly, the uncertainty in 
estimated FoI. The framework is applied to 76 T. cruzi 
serosurveys in Colombia to obtain estimates of exposure 
across Colombia from 1980 to 2014 at the municipality 
level. The importance of propagating uncertainty in esti-
mated FoI and its impact on model selection and predic-
tion was then quantified.

Methods
General approach
Our general aim is to predict the FoI at the municipal-
ity level across Colombia using data from 76 serosurveys 
(27 urban, 36 rural, 5 indigenous and 8 mixed as defined 
by the Colombian government) conducted between 
1980 and 2014 (Supp. Fig. 1 and Supp. Fig. 2). Environ-
mental, demographic and entomological predictors were 
available for each location. For each serosurvey, the full 
posterior distributions of the FoI were obtained using a 
catalytic model [3]. As a serosurvey reflects exposure 
since the birth of the oldest participant, estimated FoIs 
include past and contemporary (to the serosurvey) esti-
mates of FoI. The potential predictors included in the 
models were selected based on expert knowledge and 
preliminary analyses (Supp. Table  1. presents the full 
list of predictors considered). Log-linear models were 
fitted using a combination of these predictors. Due to 
temporal autocorrelation, a stratified bootstrapping was 
applied to fit the models using single year FoI estimates 
(randomly chosen at each iteration). To avoid overfitting, 
a repeated random sub-sampling validation was applied 
by selecting multiple times and randomly using half of 
the serosurveys for either training or validation. The pre-
dictive ability of each model (i.e. central estimate across 
the out-of-sample sets) was then evaluated to select the 
best models within urban, rural and indigenous settings. 
Finally, model averaging, with the 10 best models identi-
fied in the 3 different settings studied, was used to pro-
duce predictions of FoI as described by [14].

Typically median, or mean, FoI estimates are used 
as the dependent variable [6, 7, 9]; however, ideally, the 
uncertainty in estimated FoIs should be accounted for 
when fitting the models and evaluating their predic-
tive ability. To assess how this uncertainty impacted 
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predictions, we compared three approaches incorporat-
ing a different level of uncertainty:

	A1.	 Central estimates of FoI are used, i.e. no uncer-
tainty is accounted for as commonly used in the lit-
erature. The selection of the best model is based on 
the central trends.

	A2.	 Uncertainty in estimated FoI is used to quantify the 
model’s predictive ability but not for fitting. For a 
given model, the predictions remain the same. This 
approach potentially changes which models are 
selected as the best ones based on a more realistic 
measure of predictive ability.

	A3.	 Uncertainty in estimated FoI is used for both fit-
ting and quantifying the model’s predictive ability. 
Models are fitted and evaluated repeatedly using 
samples of the FoI posterior distribution leading to 
changes in both the predictions for a given model 
and which models are selected as the best.

The uncertainty on the predictions was characterised 
using a coefficient of variation (CV) based on the Median 
Absolute Deviation (MAD) accounting for the non-nor-
mality of the FoI distribution [15]. A3, although compu-
tationally more intensive, appropriately propagates the 
uncertainty in FoI estimates in both the predictions and 
the model selection processes.

Data input
Chagas disease force‑of‑infection
From the 112 Chagas disease serosurveys conducted 
in Colombia, only 76 serosurveys were selected, where 
the catchment area was smaller than the municipality 
level. Indeed, serosurveys having a catchment area at the 
departmental level have been excluded to be able to run 
analyses at the municipality level. The Force-of-Infection 
(FoI) is the per-susceptible rate of parasite acquisition 
[3] and had been estimated using Bayesian inference (to 
account for diagnostic uncertainty) for all those 76 age-
stratified serosurveys [3]. Thus, for each serosurvey, we 
extracted the full posterior distribution of the estimated 
annual FoI from the year of birth of the oldest participant 
up to the year the serosurvey was conducted. The median 
and the 95% Bayesian Credible Intervals (CrI) were then 
extracted from the posterior distribution. The method-
ology used to calculate the FoI has been described else-
where [3] and relies on estimating time-varying FoI based 
on catalytic models [16] (see SI for more details).

Potential explanatory variables
For each covariate, the geographical scale of interest 
was the municipality (ADM2) level when available or 
the departmental (ADM1) level, otherwise. The pool of 

variables tested related to both human population and 
environmental conditions (Supp. Table 1).

The Trypanosoma cruzi seroprevalence in public blood 
banks by year and department was provided by the Pan 
American Health Organization (PAHO). The presence of 
Triatoma dimidiata and Rhodnius prolixus at the munic-
ipality level was obtained after combining records from 
a national surveillance report of 2013 [17] and data from 
[18, 19]. We also extracted data on presence/absence of 
these two vector species, from which the proportion of 
municipalities infested for each department was calcu-
lated. Data on vector control interventions implemented 
in Colombia (1998–2014) were extracted from [20]. Cen-
sus data were obtained from the Colombia’s Department 
of Statistics (DANE) website [21]. Climate variables were 
extracted from the Köppen-Geiger climate classification 
maps at a 1-km resolution [22]. Finally, the map layer 
used was obtained from Database of Global Administra-
tive Areas (GADM) (https://​gadm.​org/ [23]).

Other covariates included the setting of the survey 
(urban, rural, indigenous, or mixed population (includ-
ing urban, rural and unknown settings); the year when 
the survey was conducted; an effect for years and decades 
(full details in Supp. Table  1). Indigenous settings com-
prised those with Amerindian populations mostly follow-
ing traditional lifestyles as described in [3]. Definitions 
for urban and rural populations followed the Colombian 
governement criteria [21].

Model selection strategy
Due to temporal autocorrelation in estimated FoI, a strat-
ified bootstrapping was applied to fit log-linear models 
using single year FoI estimates (randomly chosen at each 
iteration).

To avoid overfitting, the method of Leave-p-out cross-
validation (with p = 50%), while ultimately ideal, was 
unpractical given the computational cost. Instead, we 
used a repeated random sub-sampling validation by 
selecting multiple times and randomly half of the sero-
surveys for either training or validation. As the number 
of random splits increases, the repeated random sub-
sampling validation results approach the exhaustive 
Leave-p-out cross-validation. We used 10,000 splits to 
ensure convergence. The variation in the first and second 
5000 out-of-sample predictive R2 values for the 10 best 
models varied by less than 1% in rural and urban settings 
(3% for indigenous settings).

A total of 464 models, combining 27 covariates (includ-
ing some 2-ways interactions), were evaluated using the 
above procedure. For each model, the parameters were 
estimated using data from all settings (urban, rural, 
indigenous), but predictive performance (see below) was 
evaluated separately for each setting. For each setting, a 

https://gadm.org/
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model-averaging method [14] was used to account for 
structural uncertainties based on the 10 best models in 
each setting. Models’ weights based on predictive perfor-
mance (see below) were used to obtain model-averaged 
predictions and maps.

Modelling approaches and predictive performance
We used 2 predictive performance indicators:

–	 The standard predictive (out-of-sample) R2 [24] 
(Eq. 1),

–	 An overlap indicator estimating the percentage over-
lap between observed and predicted distributions 
(using the R-package overlap 1.5.4 [25].).

The predictive R2 compares the central estimate of the 
prediction against observations. The overlap indicator 
compares the full distribution of the predictions against 
the full distribution of the observations. Therefore, while 
the overlap indicator quantifies well the predicted uncer-
tainty, the predictive R2 focuses on the central trend in 
observations and predictions. Model selection relied on 
an average of both indicators and models’ weights were 
adapted from [14] (Eq. 2),

With R being the total number of candidate models 
(here 10) and Ind the performance indicator.

Three modelling approaches were compared which 
differ in how much uncertainty in estimated FoI is 
accounted for while i) fitting the model and ii) assessing 
its predictive performance (for model selection). The 3 
approaches were:

–	 Approach 1 (A1): only the median FoI estimates were 
used as the response variable, i.e. no uncertainty is 
used (a common approach in the literature). In this 
approach, as the response variable is characterised by 
its median, only the predictive R2 was used to select 
the best models. For comparison, the overlap indica-
tor for each model was retrospectively estimated but 
not used.
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–	 Approach 2 (A2): Uncertainty in estimated FoI is 
used to quantify the model’s predictive ability but not 
for fitting. In this approach, while only the median 
FoI is used for fitting, both the predictive R2 and the 
overlap indicator are used (averaged) to select the 
best models.

–	 Approach 3 (A3): Uncertainty in estimated FoI is 
used when both fitting and quantifying model’s pre-
dictive ability. Each model is repeatedly fitted to the 
posterior samples of the estimated FoI, and the pre-
dictive R2 and the overlap indicator are used (aver-
aged) to select the best models.

FoI prediction for the entire country
The model average built for each setting was then used to 
generate FoI estimates in each municipality of Colombia 
for the years 1980, 1990, 2000 and 2010. The median FoI 
and its uncertainty were extracted. The uncertainty was 
characterised using a standardised coefficient of variation 
(CV) calculated using the standardised Median Absolute 
Deviation (MAD) because the FoI values were not nor-
mally distributed [15].

Comparing observations and predictions 
across serosurveys
For each serosurvey, we compared, across years, the 
median and 95%CI (Confidence Interval) of the predicted 
FoI against the median and 95%CrI of the originally esti-
mated FoI [3] (i.e. the dependent variable or ‘observed’ 
FoI).

For each quantile of interest qx (i.e., median, 2.5, and 
97.5% percentiles, denoted qm, ql and qu respectively), 
we computed a distance between the ‘observed’ and pre-
dicted quantile ( δqx ). This distance was standardised by 
the interval between the observed median and observed 
upper (or lower) 95% CrI,

When the predicted and ‘observed’ medians are equal, 
we expect δqm = 0 . If the predicted median was equal to 
the upper (or lower) 95%CrI of the ‘observed’ FoIs, then 
we would have δqm = 1

(

δqm = −(1).

If the predicted and ‘observed’ upper (or lower) 95% 
CI/CrI were equal, then we expect δqu = 1 ( δqu = −1 ). 
A value δqu = 2 would indicate that the interval between 
the median and upper CI in the prediction is twice as 
wide as the interval between the median and upper CrI in 
the observations.

(3)
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The change in the denominator reflects the non-sym-
metrical nature of the 95%CI.

As it is rescaled, this measure of bias allows an assess-
ment of the predictive ability of our approaches across 
serosurveys. For each year, we estimated the median 
and interquartile range in the bias. This was also done by 
setting.

Spatial correlation and spatial heterogeneity tests
The Spatial Correlation Diagnostic test from the Prev-
Map R-package (based on a permutation of locations 
[26]) and the Moran’s I test from spdep R-package (based 
on neighbourhood values [27]) were used to assess spa-
tial auto-correlation for the best and second-best model 
in each setting. To analyse the spatial correlation inde-
pendently from the temporal one, the tests were boot-
strapped 200 times with stratification on the location 
(one value for each municipality by iteration).

In order to assess the spatial heterogeneity among pre-
dictions, the Moran’s I test under randomisation from 
spdep R-package [27] was undertaken in each setting on 
the predicted FoI values at the municipality level.

Availability of data and materials
The datasets supporting the conclusions of this article are 
available in the repository in [28].

Results
Importance of accounting for the uncertainty in FoI
When using only the central FoI estimates (A1), we 
obtained higher predictive R2 but the overlap between 
the predicted and estimated distribution was lower (Fig. 1 
and Supp. Table  2). This is reflected in the 95% cred-
ible intervals (95%CrI) of the predicted FoI values being 
smaller than the 95%CrI in the original FoI estimates, 
indicative of substantial overconfidence in the models’ 
predictions (Fig. 2). This overconfidence in predictions is 
likely propagated to municipalities where we do not have 
estimates of FoI, leading to widespread overconfidence 
nationally (Figs. 2 and 3). This simple approach also leads 
to reduced heterogeneity in both space and time (Fig. 3).

In contrast, when using the full estimated distribu-
tion of FoI for both fitting and model selection (A3), 
we observed a lower predictive R2 but a greater overlap 
between obsevations and predictions, indicating that 
both the central FoI estimates and their uncertainties are 
well characterised (Figs. 1 and 2). This is reflected in the 
95%CrI of the predicted FoIs being much closer to the 
95%CrI in the originally estimated FoIs (Fig. 2 and Supp. 
Fig.  3). A3 did not, however, lead to higher uncertainty 
across municipalities, even where serological surveys 
have not been conducted. Using A3, we estimated that 
the MAD-based CV in FoI predictions was greater than 
2 in 25% of municipalities (compared to 31 and 27% in 

Fig. 1  Comparison of the predictive ability of the best-fit models for the three approaches investigated. Approach 1: (A1) models fitted with 
median FoI estimates and selected based on predictive R2; Approach 2 (A2): models fitted with median FoI estimates and selected base on 
predictive R2 and overlap; Approach 3 (A3): models fitted with the full posterior distribution of FoI estimates and selected based on the predictive R2 
and overlap. Note: The overlap obtained for A1 is presented for comparison purpose and has been calculated using the same methodology as A2 
but is never taken into consideration for the model selection
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2010 for A1 and A2, respectively) (Supp. Table  3). Fur-
thermore, the number of extreme CV values (above 5) is 
reduced in A3 (39, 81, 17 municipalities with CV above 
5 in 1990 for A1, 2 and 3, respectively). In municipali-
ties where serosurveys had been conducted, the median 
CV was higher with A3 (median CV = 1.29, 1.28 and 1.33 
with approaches A1, A2 and A3, respectively), but the 
maximum was lower (maximum CV = 2.76 for A3, 4.06 
for A1 and 4.56 for A2) (Supp. Table 4).

Spatial and temporal predictions of FoI in Colombia
In the following, we present results from Approach 3 
(unless otherwise stated); this leads to a more accurate 
assessment of the variations in FoI and its uncertainty. 
No residual spatial autocorrelation in the FoI estimates 
was found for any of the models as assessed by meth-
ods developed in [26, 27]; therefore, municipalities’ pre-
dictions were obtained directly from estimated models’ 
parameter and sets of predictors.

The FoI varied significantly by settings, with overall FoI 
predicted to be 9.1 and 11.8 times lower in urban and 
rural settings than in indigenous settings (respectively, 
FoI values of 2.2 × 10− 3, 1.7 × 10− 3 and 2.0 × 10− 3 per 
year and per susceptible individual).

Between 1980 and 2010, the predicted FoIs showed a 
decreasing trend, with relative decreases of 23, 0.07 and 
7% in urban, rural and indigenous settings respectively. 
The decrease in predicted FoIs was statistically signifi-
cant in urban and indigenous settings (Table 1 and Supp. 
Table 1), but not in rural settings.

Spatially, rural FoIs showed a clear north–south gra-
dient, with estimated FoI values per year reaching 
0.05–0.01 in the north compared to 0.0001 in the most 
southern municipalities (Fig. 4). In all settings, the uncer-
tainty estimated was higher in the most southern munici-
palities. In 1990, the Moran’s I test under randomisation 
shows that there was spatial clustering in the predicted 
FoIs. The heterogeneity in predicted FoI was higher in 
urban settings (Moran’s I statistic value of 0.82) than in 
rural setting (Moran’s I statistic value of 0.93). In addi-
tion, the clustering effect seemed to decrease over time 
in urban settings, but not in rural ones (Moran’s I statistic 
in urban settings in 1980 is 0.82 while it is 0.78 in 2010).

Main predictors of Trypanosoma cruzi exposure
Model complexity was similar across settings, with the 
number of predictors included in the 10 best-fit models 
varying from 10 to 14 in urban settings, 7–13 in rural set-
tings and 6–12 in indigenous settings (Fig. 5).

In urban and rural areas, the predictors selected in 
each of the 5 best-fit models were consistent, with small 
changes from one model to another; while in indigenous 
settings, models were more distinct.

The urban-setting models always included the setting 
of the survey (urban, rural and indigenous) (S01), as well 
as its latitude (S05). Seroprevalence in blood banks and 
climate variables were included in 4 out of the 5 models. 
The level of poverty (D02) was selected and positively 
correlated with FoI in 3 models out of the 5 models. 
The interaction between the prevalence in blood banks 

Fig. 2  Goodness-of-fit of the model averaging of the 3 modelling approaches for all serosurveys. The solid lines and envelopes show standardised 
distances between observations and predictions’ median (blue), and 95%CrI (upper bound in red and lower bound in purple). A perfect fit would 
translate in all colored solid lines overalpping with the correspondingly-colored dotted lines. A blue solid line overlapping the blue dotted line, 
together with a red and purple solid lines at 2 and − 2 respectively would reflect a good central prediction with CrI in predictions twice as large as 
the CrI in the ‘observed’ FoI. Approach 1: models fitted with median FoI estimates and selected based on predictive R2; Approach 2: models fitted 
with median FoI estimates and selected based on predictive R2 and overlap; Approach 3: models fitted with the full posterior distribution of FoI 
estimates and selected based on the predictive R2 and overlap
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Fig. 3  Force-of-Infection of Chagas disease in urban, rural and indigenous settings, Colombia, 1990. Main map, predictions per year and per 
susceptible individual; small map, Median Absolute Deviation (MAD) Coefficient of Variation (n = 1065 municipalities) . Rows correspond to the 3 
modelling approaches. Maps show model-averaged estimates (across the 10 best setting-specific models). Approach 1: models fitted using the 
median FoI estimates and selected based on predictive R2; Approach 2: models fitted with median FoI estimates and selected based on predictive 
R2 and overlap; Approach 3: models fitted with the full posterior distribution of FoI estimates and selected based on the predictive R2 and overlap

Table 1  Predicted FoI averaged across all Colombian municipalities in 1980, 1990 and 2010, the percentage of decrease between 
1980 and 2010 (trend) for each setting and the spatial clustering effect given by the Moran’s I statistic for the test under randomisation 
in 1980, 1990, 2000 and 2010 (n = 1065 municipalities)

a Statistically significant at a 5% significance level according to Student’s t test comparing FoI values between 1980 and 2010

Predicted FoI values Moran’s I statistic

1980 1990 2010 trend 1980 1990 2000 2010

mean (sd) mean (sd) mean (sd) %

Urban 2.2 × 10−3 (1.1 × 10−3) 2.1 × 10− 3 (1.1 × 10− 3) 1.7 × 10− 3 (9.9 × 10− 4) −23a 0.82 0.82 0.79 0.78

Rural 1.7 × 10− 3 (1.0 × 10− 3) 1.7 × 10− 3 (1.0 × 10− 3) 1.7 × 10− 3 (1.0 × 10− 3) −0.07 0.93 0.93 0.93 0.93

Indigenous 2.0 × 10− 2 (4.5 × 10− 3) 2.0 × 10− 2 (4.5 × 10− 3) 1.8 × 10− 2 (4.4 × 10− 3) −7a 0.91 0.91 0.90 0.90
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and tropical climate (X05) was selected in 4 of the mod-
els. The year and the interaction between the amount 
of vector control interventions and the proportion of 
municipalities infested by Triatoma dimidiata were both 
included in one of the models.

The rural-setting models always included the year 
when the serosurvey was conducted (S01), as well as the 
setting (urban, rural or indigenous) (S02) and its latitude 

(S05). Four out of the 5 models included a climate vari-
able. Blood bank and vector variables were only included 
once. Demographic, vector interventions and time vari-
ables were never selected in rural models, not even as 
interaction terms. Only two interactions were included; 
the interaction between prevalence in blood banks and 
tropical climate (X05), and the proportion of municipali-
ties infested by Rhodnius prolixus and longitude (X11).

Fig. 4  Spatiotemporal trends in Chagas disease Force-of-Infection, Colombia, 1980–2010. Main maps, predictions per year using approach 3 and 
model averaging; small maps, MAD Coefficient of Variation (n = 1065 municipalities)
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The indigenous-setting models were far more varied. 
The year when the serosurveys were conducted (S01) was 
included in one model. The setting was always included 
(S02 and S03/S04) but one of the models used the indig-
enous setting (S03) and the urban setting (S04) against 
the others as risk factors. The effect of latitude (S05) was 
not as clear as for urban and rural settings. Poverty (D02) 
was the only demographic variable included directly, 
but the population density was included in interaction 
terms with the prevalence in blood banks (X03). Vector 
variables played an important role in three models. These 
predictors were also included as interaction terms in X11 
(the proportion of municipalities infested by R. prolixus 
and longitude) and X14 (T. dimidiata density and vector-
control interventions).

While all the best-fit models selected for prediction in 
rural settings included a predictor specifying the year 
when the serosurvey was conducted (S01, Fig.  5), this 
variable was not included in any of the best models for 
predictions in urban settings and was included in only 
one of the models for indigenous settings. Consistently, 
for a given year and municipality, the predicted FoI val-
ues from older serosurveys were higher than those of 
more contemporary serosurveys (Supp. Fig. 4). The inclu-
sion of the year of the survey as predictor for rural set-
tings highlights potentially a bias in sampling, with older 
serosurveys being less representative and biased toward 

municipalities with higher FoI (Supp. Table 6 and Supp. 
Fig. 4).

Discussion
We predicted spatial and temporal variations in FoI 
across Colombia based on estimated FoI from 76 sero-
surveys conducted between 1980 and 2014. Our analysis 
highlights the importance of accounting for the uncertain 
nature of the estimated FoI by demonstrating a substan-
tial risk of overconfidence when using median estimates 
of FoI to fit and evaluate models, as typically done in the 
literature [6, 7, 9]. We propose a novel methodology to 
fully propagate uncertainty from the estimated FoI onto 
the predicted one, giving a realistic assessment of both 
the central tendency and uncertainty surrounding past 
and current exposure to Chagas disease across Colombia.

Accounting for and communicating uncertainty in FoI 
estimates is critical to better inform public health and cli-
nician stakeholders [13]. It allows a better assessment of 
where information is missing, rather than giving a false 
sense of certainty. Our framework offers the opportunity 
to prioritise areas where serosurveys would be needed. In 
addition, where uncertainty is low, the models identified 
areas where we can be confident that populations have 
experienced, or are experiencing, high exposure to T. 
cruzi, which is critical to better inform focused interven-
tions for patient diagnosis and care.

Fig. 5  Predictors included in the model averaging of the FoI of Chagas disease in Colombia. Models fitted with the full posterior distribution of FoI 
estimates and selected based on predictive R2 and overlap. For the full set of predictors see Supp. Table 1
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The performances of the models obtained were good, 
with performance indicators measuring the predictive 
ability of both central trends and uncertainty, estimated 
to vary between 0.46 and 0.67 for the five best-fit models 
(Supp. Table 2). When predicting FoI in new areas (where 
serosurveys have not yet been conducted), the uncer-
tainty, characterised by the CV, can become much larger, 
while the median remains consistent across settings (in 
1990, urban: median CV = 1.48, range CV = 0.32–8.19; 
rural: median CV = 1.50, range CV = 0.24–11.00; indig-
enous: median CV = 1.50, range CV = 1.07–3.52). In con-
trast, Garske et al. obtained FoI predictions of yellow fever 
with a CV ranging from 0 to 3 using central estimates 
of the FoI to fit their model. Using the same methodol-
ogy (i.e. Approach 1), our results showed similar median 
uncertainty (urban: median CV = 1.48, range = 0.34–
6.05; rural: median CV = 1.51, range = 0.23–11.98). To 
some extent, the relatively smaller uncertainty obtained 
in the context of yellow fever by Garske et al. might also 
be explained by their assumption of a constant FoI over 
time, rather than the time-varying FoI we used in this 
work for Chagas disease. Given the demographic and 
public health changes that have occurred in Colom-
bia over the past decades (considerable rural-to-urban 
migration, housing improvements, scaled-up vector con-
trol, more efficient diagnostic protocols), we believe that 
accounting for temporal variations in Chagas disease FoI 
is critical for our analysis, even at the ‘cost’ of increased 
uncertainty.

At first glance, our analysis highlights some unex-
pected results. The effect of time was relatively weak, i.e. 
with FoI not showing a significant decrease in rural set-
tings; as was the effect of rural vs. urban settings. Such 
results contrast with previous evidence, which showed a 
strong temporal trend [3, 29–31], and increased exposure 
in rural settings where vectorial transmission is much 
more prevalent [3, 30, 31]. In terms of temporal trends, 
our final models always include time-varying variables, 
such as poverty levels and vector density, which have 
decreased over time, due to intervention implementa-
tion and general improvement of living conditions in 
the country. However, we showed that the year when the 
serosurvey was conducted impact the estimated FoI, with 
older serosurveys biased toward high-risk areas (Supp. 
Fig.  4). Regarding the lack of substantial differences in 
the level of exposure between rural and urban settings, 
the great population migration trends observed across 
the country are likely blurring this effect. Considerable 
rural to urban migration has taken place in Colombia, 
with one-third of the rural population aged below 40 in 
1951 having migrated to urban settings by 1964, mostly 
to find better employment opportunities [32]. More 
recently, it has been estimated that more than 3.5 million 

people had migrated to urban centres to escape violence 
in rural areas [33]. Having lived for an extended period 
of time in rural settings, these migrants may well have 
been exposed to T. cruzi in rural areas but now account 
for the estimated FoI in urban settings. Unfortunately, 
the participants’ migration history was not recorded (or 
available) in the serosurveys used. Similar dynamics of 
migrations have been shown to explain a substantial bur-
den of Chagas disease in both endemic (e.g. in Arequipa, 
Peru [34]) and non-endemic settings [35].

Another spatial challenges is the scale at which the 
analyses have been conducted. Indeed, we demonstrate 
small-scale spatial heterogeneity in Chagas disease expo-
sure between the municipalities within a department. 
And, while our approach was designed to be consertva-
tive by excluding serosurveys providing information only 
at the departmental level, we acknowledge that further 
small-scale heterogeneity may exist, i.e. difference could 
occur between villages of the same municipality. How-
ever, the municipal level is the operational level in the 
control of Chagas disease and is, therefore, the most use-
ful level to characterize exposure in a way that actionable 
information can be extracted. Also,we found that most of 
the important variables for predictions were available at 
the municipality level (poverty indicator, vector density), 
but not disaggregated further. Thus, even if a small-scale 
analysis could provide some insights, technically and 
operationally, the municipal level remain the most rel-
evant one.

While serosurveys provide invaluable information 
on exposure, our analysis highlights the importance of 
appropriate sampling strategies. Sampling decisions 
taken to collect the data have a clear impact on our abil-
ity to provide representative predictions over large spatial 
and temporal scales. One issue linked to sample repre-
sentativeness is the location of the serosurveys. Indeed, 
the likely past focus on estimating exposure in high-risk 
populations may have created a selection bias that cannot 
be easily handled when modelling the data. In Colombia, 
this seemed especially true in rural settings (Supp. Fig. 4). 
This bias likely explains much of the temporal trends that 
have been reported in previous studies (e.g. [3]). This 
highlights the problem of relying on surveys that were not 
designed to provide a representative sample but rather 
organised to confirm and quantify incidence in high-risk 
areas. Extrapolation to areas where no serosurveys have 
been conducted is then made more uncertain and need 
to be interpreted accordingly. Another issue linked to 
sample representativeness is the targeted age groups of 
the surveys. In 2012, the World Health Organization set 
elimination of (intradomicilary) Chagas disease trans-
mission as a goal in its first neglected tropical disease 
roadmap; one of the indicators used to monitor progress 
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towards this goal was the seroprevalence among under-
five children, aiming to measure active transmission as 
opposed to past exposure [3, 36]. Unfortunately, such 
(narrow age-range) sampling scheme hampers obtaining 
valuable information about past exposure, which for a 
chronic illness, such as Chagas disease, is crucial to target 
diagnosis and treatment. We argue that organising rep-
resentative serosurveys and covering a broader age range 
is essential to obtain a reliable picture of the epidemio-
logical situation and the impact of control interventions 
in endemic countries, particularly for infectious diseases 
that use serosurveys for the purposes of surveillance.
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